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1. INTRODUCTION 

Among the many sources of error in modeling tropical 
cyclones is discretization error: how well are the governing 
equations approximated numerically? While discretization 
error is typically small, numerical methods with smaller er- 
rors should be preferred over others, all else being equal. 
This paper addresses the tradeoff between higher-accuracy 
discretization and increased computational work in an adap- 
tive multigrid tropical cyclone track model. 

2. MODEL DESCRIPTION 

The model described here is a higher-order version of 
the MUDBAR model described in Fulton (1997, 2000). 
Formulated on a section of the sphere using a Mercator 
projection (true at latitude <j> = 4>c), the model consists of 
the modified barotropic vorticity equation 

9C + m2 J(V>, C) + ßm-£- = um2V2<; 

with relative vorticity £ and streamfunction ip related by 

(1) 

14 := (V2-^)V=-^. (2) 

Here V2 = d2/dx2 + d2/dy2, J(^,C) is the Jacobiarf 
of (ip,() with respect to (x,y), ß = 2Qcoscj>/a (with a 
and fi the radius and rotation rate of the earth), m = 
cos 0C/cos 0 is the map factor, v is the diffusion coeffi- 
cient, and 7 is the inverse of the effective Rossby radius. 
The model domain is a rectangle in x and y centered at 
(x,y) = (0,0), where (A, <j>) = (\c,<t>c)- At the bound- 
aries we specify the streamfunction tp (and thus the normal 
component of the velocity); where there is inflow, we also 
specify the vorticity £. 

The equations are discretized in space by finite dif- 
ferences on uniform rectangular grids, approximating the 
advection terms by the Arakawa Jacobian. The model 
achieves higher resolution near the vortex by superimposing 
nested overlapping grids with different mesh sizes. Unlike 
conventional nested-grid methods, using multigrid process- 
ing (Brandt, 1977) in solving for the streamfunction allows 
optimal solution speed and accurate estimates of trunca- 
tion error; the latter can be used in an adaptive mesh re- 
finement scheme to provide just the resolution needed at 
each point. More detail for the second-order model is given 
in Fulton (2000); here we investigate the gains possible by 
using fourth-order differencing. 
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3.     FOURTH-ORDER DISCRETIZATION 

The model is discretized in time using the classical 
fourth-order Runge-Kutta scheme (also used in the second- 
order model). To achieve fourth-order discretization in 
space we use the methods described below. 

3.1   Streamfunction equation solution 

For the Helmholtz problem (2) we use a compact 
fourth-order discretization known as the Mehrstellen Ver- 
fahren (MV) discretization (e.g., Schaffer, 1984). For the 
Poisson problem (i.e., setting 7 = 0 and m = 1) this takes 
the form 
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Here iph and £h denote grid functions consisting of the ap- 
proximate values of streamfunction and vorticity on a uni- 
form rectangular grid with mesh spacing h in x and y, and 
the square brackets denote difference stencils on that grid. 
Since this compact discretization involves only the nearest- 
neighbor points, it can be applied at all interior points on 
the grid (with Dirichlet boundary conditions specifying the 
boundary values). 

To solve the resulting discrete problem efficiently we 
use a multigrid method. As in the second-order model, this 
uses the Full Multigrid (FMG) approach, solving on each 
grid level from coarsest to finest in turn, interpolating the 
solution from the previous level to provide the initial approx- 
imation on the new level. The fourth-order discretization 
(3) is used only on the "currently finest" level. Compared 
to the second-order method, three changes are needed: 

(1) Gauss-Seidel relaxation is used with lexicographic or- 
dering (rather than red-black); 

(2) Two V(2,l) cycles are needed to solve on each level 
(rather than one V(l,l) cycle); 

(3) The initial interpolation to a new level requires sixth- 
order accuracy (rather than fourth-order bicubic inter- 
polation). 

The change in relaxation ordering is a result of using a nine- 
point stencil; the other two changes are required to ensure 
that the discrete problem is solved adequately on any given 
grid and that its solution is accurately approximated on the 
next grid. With these changes we find that the resulting 
method [in multigrid terminology, a 2-FMV(2,l) method] 
solves to the level of truncation error (i.e., residual norm less 
than the truncation error norm) for problems with known 
(smooth) solutions, independent of the mesh size h. Nu- 
merical tests verify that the error in the computed solution 
of the Helmholtz problem is indeed 0(h4). 
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3.2   Vorticity equation discretization 

The standard second-order Jacobian of Arakawa (1966) 
uses only nearest-neighbor points and conserves discrete 
analogues of vorticity, enstrophy, and kinetic energy. Un- 
fortunately, it can be shown that no fourth-order Jacobian 
has the same properties: to achieve fourth-order accuracy 
while maintaining the conservation properties one must in- 
clude points other than the nearest neighbors. Thus, we use 
the fourth-order Jacobian from the Appendix of Arakawa 
(1966) at all interior points on the grid except those along 
the first interior lines (adjacent to each boundary), where 
we use the usual second-order Jacobian. Since the set of 
points where lower accuracy is used is small, this has neg- 
ligible effect on the overall accuracy. Numerical tests with 
specified ij> and C, verify that the truncation error for the 
Jacobian is indeed 0(h4). 

4.     NUMERICAL RESULTS 

To quantify the model performance we use the track 
error, defined as the difference in vortex position compared 
to a high-resolution reference run (h = 4 km). Figure 1 
shows the track error as a function of h for several uniform- 
grid runs of the second-order and fourth-order models at 24, 
48, and 72 hours and the mean errors over each 72 hour 
model run. The slopes of the curves verify that the overall 
model converges at approximately the proper rate. 
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Figure 1. Overall convergence of the model: 
(a) second-order version, (b) fourth-order version. 

Does the asymptotic superiority of fourth-order differ- 
encing pay in practice? To answer this, we ran both models 
with variety of grids (uniform grids and local refinements 
using patches of various specified sizes). Figure 2 shows the 
resulting mean track errors as a function of the computer 
time (for a 72 hour model run). For the uniform-grid runs 
(points joined by lines in Fig. 2) the fourth-order model 
is approximately 5-10 times faster than the second-order 
model (for the same level of error); for the same amount of 
computer time, it is at least 5 times more accurate. With 
local refinement (remaining points in Fig. 2), fourth-order 
differencing shows some advantage for moderate resolution 
(e.g., errors of 10-30 km); however, the advantage appar- 
ently disappears at higher resolutions. This latter result 
may reflect the need for higher-order grid transfers in the 
fourth-order model with local refinement. 
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Figure 2. Track error vs. CPU time. 
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